
11/5/2025

1

Review for Exam 2

Symbolic AI Techniques

1

2

11/5/2025

2

Forward Chaining Inference

• Tell-Ask Systems

3

King(John)
∀x [King(x) ∧ Greedy(x) ⇒ Evil(x)]

+
Inference Engine

(Forward Chaining)

Tell Greedy(John)

Evil(John)!

Backward Chaining Inference

• Tell-Ask Systems

4

King(John)
Greedy(John)

∀x [King(x) ∧ Greedy(x) ⇒ Evil(x)]
+

Inference Engine
(Backward Chaining)

Ask Evil(John)?

Yes!

3

4

11/5/2025

3

PROLOG Knowledgebase
isa(X, mammal) :-
 has(X, hair).
isa(X, bird) :-
 has(X, feathers),
 flies(X).
isa(X, carnivore) :-
 isa(X, mammal),
 has(X, pointed_teeth),
 has(X, claws),
 has(X, forward_pointing_eyes).
isa(X, ungulate) :-
 isa(X, mammal),
 chews_cud(X);
 has(X, hoofs).
isa(X, cheetah) :-
 isa(X, carnivore),
 color(X, tawny),
 has(X, dark_spots).
isa(X, giraffe) :-
 isa(X, ungulate),
 has(X, long_legs),
 has(X, long_neck),
 color(X, tawny),
 has(X, dark_spots).

% Facts:
has(stretch, hair).
chews_cud(stretch).
has(stretch, long_legs).
has(stretch, long_neck).
color(stretch, tawny).
has(stretch, dark_spots).

has(swifty, hair).
has(swifty, pointed_teeth).
has(swifty, claws).
has(swifty, forward_pointing_eyes).
color(swifty, tawny).
has(swifty, dark_spots).

Vocabulary

Knowledge Engineering
FOPC

Knowledge Base
Tell-Ask Systems

Forward Chaining Inference
Backward Chaining Inference

Definite Clauses
Logic Programming

PROLOG

6

5

6

11/5/2025

4

Meaning Representation Systems

• Logic
• Semantic Networks
• Frames
• Conceptual Dependency
• many many others…
• Japan’s Fifth Generation Project, and several others
• Successes of KR&R
• Limitations of KR&R

7

Frames – Organized in a Hierarchy/Network

8

John went to Gulliftys.
He sat down.
He read a menu.
The server came to take his
order.
He ordered a hamburger.
He ate the hamburger.
He paid the check.
He left a tip.
He left the restaurant.

Restaurant
 Name: Gulliftys
 Address: 1149 Lancaster Ave, Bryn Mawr, PA
19010
 Phone: (610) 525-1851
 Website: http://gulliftys.com
 Cuisine Type: American
 Seating Capacity: 120
 …etc…

Menu
 Salads: …
 Main Dishes:
 Entrée: Chicken Cacciatore, $23.00
 Entrée: Hamburger, $12.00
 Entrée: etc.
 Desserts:
 Dessert: Rice Pudding, $8.00
 Dessert: Crème Caramel, $8.00
 Beverages:
 Soda: Coke, $3.00
 Hot Beverage: Tea, $3.50

has

Restaurant
isa

7

8

11/5/2025

5

CD – Representations & Inferences

9

• John went to New York.

ACTOR: John
ACTION: PTRANS
OBJECT: John
DIRECTION TO: New York
FROM: unknown

• John bought a book from Mary.

ACTOR: John
ACTION: ATRANS
OBJECT: money
DIRECTION TO: John
FROM: Mary

• John read a book.

ACTOR: John
ACTION: ATTEND
OBJECT: eyes
DIRECTION TO: book
FROM: unknown

• John drank a glass of milk.

ACTOR: John
ACTION: INGEST
OBJECT: milk
DIRECTION TO: mouth of John
FROM: glass

 Instrument:
 ACTOR: John
 ACTION: PTRANS
 OBJECT: glass containing milk
 DIRECTION TO: mouth of John
 FROM: table
 Instrument:
 ACTOR: John
 ACTION: MOVE
 OBJECT: hand of John
 DIRECTION TO: glass
 FROM: unknown
 Instrument:
 ACTOR: John
 ACTION: GRASP
 OBJECT: glass of milk
 DIRECTION TO: hand of John
 FROM: unknown

Semantic Networks

• Represents semantic relations between concepts in a network.

It is a graph
vertices represent concepts
edges represent semantic relations

• Also represented as a triple:

<entity, relation, entity>
<mammal, has, vertebra>
<bear, is a, mammal>
<fish, lives in, water>

10
From: https://en.wikipedia.org/wiki/Semantic_network#/media/File:Semantic_Net.svg

9

10

11/5/2025

6

Large-Scale AI/KR&R Efforts
• Japanese Fifth Generation Project

10-year project started in 1982.
Creating supercomputers for future AI development using PROLOG.
Develop Knowledge Information Processing Systems.
Spent ~$300 million over twelve years.
(IBM’s research expenditure in 1982 was $1.5 billion!)

• Limited Results

Developed foundations for concurrent logic programming.
Developed Kappa (a parallel DBMS)
Developed an automated theorem prover, MGTP
Attempt at applications in bioinformatics.

• Did not meet commercial success

The arrival of SUN Workstations and x86 based machines far surpassed the abilities.
Failed on attempts to develop concurrent KR&R systems.

• Perhaps the ideas were far ahead of its time.

For example, current multi-core processors being used in current AI work.

11

CYC – The Ultimate Expert System

• Methodology

Developed a representation language, CycL.
Developed a set of representations (ontological engineering)
Developed a massive knowledgebase comprising human
knowledge.
Connected CYC’s knowledge to Wikidata (Wikipedia) and other
large knowledgebases.
An inference engine.

12

11

12

11/5/2025

7

The Seasons of AI
• 1950s – 1966 First AI Summer: Irrational Exuberance

Early successes in game playing, theorem proving, problem solving

• 1967 – 1977 First AI Winter

No useful deliverables led to loss of research funding and cancellation of AI programs. In UK The Lighthill Report (toy AI
systems do not scale due to combinatorial explosion).

• 1978 – 1987 Second AI Summer/Spring

Rise of knowledge-based systems, success of Expert Systems. Boom times.

• 1988 – 1993 Second AI Winter

Failure of AI Hardware companies (Symbolics, LMI, Lisp Machines) and AI Companies (Teknowledge, Inference Corp. etc.)
Commercial deployments of Expert Systems were discontinued.

• 1993 – 2011 Third AI Summer (Mostly academic advances)

Statistical approaches and extensions to logic (Bayesian Nets), Non-Monotonic Reasoning (in Logic), Fuzzy Logic, advances
in Machine Learning (Decision Trees, Random Forests, Neural Nets), Cognitive Models, Logic Programming, Case-Based
Reasoning, Genetic Algoritms, Agent-based approaches, etc.

• 2011 – Now Third AI Spring

Rise of Deep Learning, Neuro-symbolic AI, ChatGPT and other chatbots, generative AI.

13

Towards Usable Representations (1985-now)

• Wordnet, 1985 (Princeton U.)

A lexical database of semantic
relations between words.

Over 150,000 organized in 207,000
word-sense pairs (eat-out, car-
pool).

Now available for multiple
languages.

14

13

14

11/5/2025

8

An Example KG

15

From: https://atonce.com/blog/knowledge-graph

Concepts, relations etc. in a KG
can be obtained from and linked
to several disparate structured
Sources of data:

ConceptNet
ATOMIC
Wikidata
WordNet
Roget
VerbNet
FrameNet
VisualGenome
ImageNet

Commonsense Knowledge

On stage, a woman takes a seat at the piano. She

1. sits on a bench as her sister plays with a doll.
2. smiles with someone as the music plays.
3. is in the crowd, watching the dancers.
4. nervously sets her fingers on the keys.

Which one?

Answering the question requires knowledge that humans possess and
apply, but machines cannot distill from the communication.

Also, remember Winograd schemas?

16

15

16

11/5/2025

9

Review: Meaning Representation Languages

Knowledge Engineering
FOPC

Knowledge Base
Tell-Ask Systems
Forward Chaining

Inference
Backward Chaining

Inference
Definite Clauses

Logic Programming
PROLOG

17

Frames
Conceptual Dependency

Semantic Networks
5th Gen. Project, SGI, Alvey, ESPRIT

CYC
Wordnet

Knowledge Graphs
Commonsense Knowledge

Behavioral AI

• Subsumption Architecture

Situatedness
Embodiment
Intelligence bottom up
Emergence

• Layers of control

All layers may have an action to suggest.
Only one will be carried out at any time.
The action from the “lowest” (highest) module.
E.g. AVOID subsumes WANDER.
WANDER subsumes EXPLORE.

• Built several robots: Allen, Herbert, Tom & Jerry,
Seymour, Genghis, Squirt.

18

Genghis Link: https://www.youtube.com/watch?v=1j6CliOwRng

17

18

11/5/2025

10

Agent Types

• Table-Driven Agents
Use a percept-action table in to find next action.

• Simple Reflex Agents
Based on condition-action rules

• Agents with Memory
Have internal states that are used to keep track of past states of the world.

• Agents with Goals
Have state and goal information to take future states into consideration.

• Utility-Based Agents
Use utility theory to act rationally.

• LLM-Based Agents
Carry out actions recommended by an LLM.

19

Other Successful Approaches

• Rational Agents (Utility based agents)

• Bayesian Inference

• 1997: IBM’s Deep Blue beat Garry Kasparov

• 2012: IBM’s Watson wins Jeopardy!

20

19

20

11/5/2025

11

Robot Architectures: Vocabulary

Intelligence w/o
Representation

Behavioral AI
Subsumption Architectures

Genghis, Cog
NASA Pathfinder

NASA Spirit & Opportunity
NASA Curiosity, Ingenuity
Boston Dynamics Big Dog

Boston Dynamics Spot, Atlas
Agent-Based AI
Types of Agents

Agentic AI
IBM Watson

21

Subsymbolic AI

21

22

11/5/2025

12

Symbolic versus Subsymbolic AI

• Symbolic AI

Everything is represented using symbols.

A is a block Block(A)

Representation of a state

Expert Systems, Frames, Scripts, Semantic Nets, Knowledge Graphs
etc.

• Subsymbolic AI

There are NO SYMBOLS.

Approaches that employ Neural Networks and other statistical mechanisms

23

McCulloch-Pitts Neuron, 1943

24

From: https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1

• Binary Threshold Units

• Captures the inhibitory and excitatory connections
between biological neurons.

• Limited in what such a model can actually do.

• Missing the learning capability: how to model changes in
inhibitory and excitatory connections. This was later
included in Hebb’s model (1949). Repeated firings can
modify the nature of the connections.

• Frank Rosenblatt, 1958 combined these ideas into the
model of a Perceptron.

23

24

11/5/2025

13

The Perceptron – A Gross Approximation
(Rosenblatt, 1958)

25

• A single “neuron” (unit)
aka Threshold Logic Unit (TLU)

• Transfer Function
T is the Threshold value (assume 𝑇 = 0)

𝐼 = ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖

𝑦 = ቊ
+1, if 𝐼 ≥ 𝑇
−1, if 𝐼 < 𝑇

x1

xn

inputs output
y

wn

w1

Perceptron Learning Rule

• Changes the weights

ഥ𝒘 = [𝑤1, 𝑤2] weight vector

ഥ𝒙 = [𝑥1, 𝑥2] input vector

𝒘𝒏𝒆𝒘 = 𝒘𝒐𝒍𝒅 − 𝑦* ഥ𝒙 Training Rule

26

25

26

11/5/2025

14

Perceptron: Vocabulary
• Labelled Training Dataset

N samples/patterns/input vector with desired outputs (targets/labels)

• Output Error (Loss)

Error = Desired Output – Actual Output

• Learning Rule

Specifies change in the weights using the Error

• Prediction/Forward Pass

Application of a pattern to produce output

• Epoch

1 pass through the training dataset

27

Perceptron Training Algorithm

Initialize all weights to random values
 #In what range? Typically [-1.0..1.0]
Set #Epochs to some N
 // How to decide what N should be?
Do N times or until all outputs are correct
 Do for each pattern in the training set
 apply the pattern to the perceptron
 change the weight vector as defined

28

27

28

11/5/2025

15

Example – The Iris Dataset

• 150 Samples, 50 of each variety
Labelled: 0 (Setosa), 1(Versicolor), 2(Virginica)

[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
...

29

From: https://www.fs.usda.gov/wildflowers/beauty/iris/flower.shtml

https://peaceadegbite1.medium.com/iris-flower-classification-60790e9718a1

Sepal Length & Width

Petal Length & Width

Petal Length

Petal Width

inputs 0 , if Setosa
1, if Versicolor

y

w2

w1

Parameters = 2
Hyperparameters: # of epochs

Perceptron Learning

30

29

30

11/5/2025

16

Another Example – MNIST Dataset

• 70,000 images of handwritten digits

• Each image is 28x28 pixels

• Each pixel is in the range [0..255]
0 = white, 255 = black. Greys in between.

• Training set: 60,000 images
• Testing set: 10,000 images

• Task: Given an image, classify it as [0,1,…,9]

31

Limitations of Perceptrons

• Limited to binary classification tasks only

• Perceptrons, by Minsky & Papert, 1969

Types of problems Perceptrons could solve were limited to linearly separable problems.
Real world problems are not linearly separable.

Perceptron Learning Algorithm would not scale up to tasks requiring large number of weights
and thresholds.

For networks with three or more layers there is no obvious way of knowing what the desired
output of hidden layers should be.

There is no training procedure possible for networks of three or more layers.

Led to drying up of funding in neural network research in the 1970s.

32

31

32

11/5/2025

17

Introducing Bias

• Instead of using an arbitrary Threshold value, we can
turn it into an input (=1)

• The weight on the bias, 𝑤0 can then be learned using the
same algorithm.

ഥ𝒘 = 𝑤0, 𝑤1, 𝑤2

ഥ𝒙 = 1, 𝑥1, 𝑥2

• More often, the net input is determined using the
following (and no bias is used for output layer):

𝐼 = ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖 + ഥ𝒃

x1

x2

inputs output
y

w2

w1

T=0

x1

x2

inputs output
y

w2

w1

w0
1

33

Multi-Layer Perceptron Network

• Example: This could be a network that
can recognize all three categories of
irises from the Iris dataset.

4 inputs, 3 outputs (Hyperparameters)
4x4 (input to hidden) + 4x3 (hidden to
output) weights + 7 bias inputs

#Parameters = 16+12+7 = 35

• Since all units are linear TLUs this
network can only learn linear functions.

• We need to make each unit non-linear.

N inputs

Hidden Layer

Output Layer

Input Layer

Bias Inputs

34

33

34

11/5/2025

18

Backpropagation Network (Classic Version)
• Net Input

I = ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖 + ഥ𝒃

• Activation Function (Sigmoid)

f I =
1

1 + 𝑒𝐼

• Learning Rule

∆𝑤𝑖𝑗 = 𝛽 ∗ E ∗ f(I𝑗)

• Error/Loss

Ej
output

= 𝑦𝑗
desired − 𝑦𝑗

actual

Ei
hidden =

df(Ii
hidden)

dI
෍

𝑗=1

𝑛

(𝑤𝑖𝑗Ej
output

)

N inputs

Hidden Layer

Output Layer

Input Layer

Bias Inputs

35

Backpropagation (Classic) Training
Algorithm
set minimum acceptable error and #epochs to train, set 𝛽
set #epochs = 0

repeat

 total error = 0

 for each pattern in training set do
 do a forward pass
 for each unit in the hidden layer do
 compute net input I, and activation, f(I)
 save f(I) for backpropagation
 for each unit in the output layer do
 compute net input I, and activation f(I)
 output y = f(I)

 do backward pass
 for each unit in the output layer do
 compute error = desired – actual output (Ej

output
= 𝑦𝑗

desired − 𝑦𝑗
actual)

 total error = total error + error

 for each unit in the middle layer do
 compute incoming error = weighted sum of output later errors (σ𝑗=1

𝑛 (𝑤𝑖𝑗Ej
output

))
 compute final error = incoming error * f(I) * (1 – I) [derivative)

 for each unit in the output layer do
 for each weight from a hidden layer to unit do
 compute weight change 𝛽 ∗ error ∗ 𝑓(I) and update weight

 for each unit in the middle layer do
 for each weight from an input layer unit do
 compute weight change 𝛽 ∗ final error ∗ f(I) and update weight

 #epochs = #epochs + 1

until total error < maximum acceptable error or #epochs reaches limit
36

35

36

11/5/2025

19

Backpropagation: Gradient Descent

• Learning in a neural network using
Backpropagation is essentially a
Gradient Descent process.

• Each change in the weights is an
attempt to reduce error and descend
into the lowest possible position in
the “error bowl” (as shown in a 2-D
weight vector case)

• In higher dimensional weight vectors
(typical ML situations), the error
surface can be quite complex.

37

Error

Weight, x

Weight, y

∆𝑤

𝑤old

𝑤new

“error bowl”

From: https://builtin.com/data-science/gradient-descent

Backpropagation: Gradient Descent

• In higher dimensional weight vectors
(typical ML situations), the error
surface can be quite complex.

38

Error

Weight, x

Weight, y

∆𝑤

𝑤old

𝑤new

“error bowl”

From: https://builtin.com/data-science/gradient-descentFrom: https://poissonisfish.com/2023/04/11/gradient-descent/

37

38

11/5/2025

20

Backpropagation: Learning rate

• Learning Rate, 𝛽 (0 < 1)

• The value of 𝛽 determines how
fast or slow the gradient descent
takes place.

• Typically, one starts with a higher
value (say 0.5 or 0.6) and then
decrease it as the learning/epochs
progresses. This is called a
Learning Rate Schedule.

39

From: https://www.ibm.com/topics/gradient-descent

Popular Activation Functions

40

Relu – Rectified Linear Unit: 𝑓(𝐼) = max(0, 𝐼) Sigmoid: f I =
1

1+𝑒I

39

40

11/5/2025

21

Softmax Activation Function

• Transforms a vector of arbitrary
numbers into a probability
distribution.

Each value is in [0.0..1.0]
Summ of all values is 1.0

Useful for multi-class
classification problems. E.g.,
Recognizing handwritten digits
(ten possible outcomes [0, ..9])

41

Backpropagation: Vocabulary
• In what order do we present the patterns? As they are in the training

set? Or, randomly?
If patterns are chosen at random (without replacement), we call it
Stochastic Gradient Descent (SGD)

Choices:

Do a backpropagation pass after every input. True SGD

Do the backward pass after all the inputs have been seen, and
errors recorded. Full batch SGD

Do a small batch of data and then do a backward pass. Mini Batch
SGD (each batch is a power of 2)

• Is there a better way to assess error/loss? Loss Functions
• Are there any other weight update mechanisms? Optimizers (also

manage Learning rate schedules)

Most of the period from 1986 until now has been spent on studying
these questions.

42

Adam
Backpropagation
Bias
Binary Cross Entropy
Categorical Cross Entropy
Epochs
Exponential
Forward Pass
Full Batch SGD
Gradient Descent
Hyperparameters
Labelled Dataset
Learning Rule
Loss Function
Mean Absolute Error
Mean Squared Error
Mini Batch SGD
Model
Optimizer
Parameters
Relu
RMSProp
SGD
Sigmoid
Softmax
Tanh
True SGD

41

42

11/5/2025

22

The Learning Paradigm

43

Learning/Training
Algorithm

Trained
Model

Model Design Labelled
Training Dataset

Test Dataset

Outputs
Accuracy

Finished
Model

Actual Data

Outputs

How NN Learning Works

44
From: Chollet, 2021.

43

44

11/5/2025

23

Introducing Keras

• Deep Learning API for Python (2016-17)
• Built on top of TensorFlow (2015)
• Can run on a typical CPU, or can be accelerated with specialized

hardware, if available. GPUs (Graphics Processing Units), TPUs
(Tensor Processing Units)

• Makes Neural Network design, implementation, and exploration
akin to building with LEGOs!

45

From: Chollet, 2021.

Example: Recognizing Handwritten Digits

• MNIST Dataset
70,000 images (28x28 pixels), grayscale
values (in range 0 (white) to 255 (black).

• Training set: 60,000 images
• Testing set: 10,000 images

• Task: Given an image, classify it as
[0,1,…,9]

46

45

46

11/5/2025

24

MNIST Digit Recognition: The Design
• A 3-layer network: input, hidden, and output layers
• Input will be 28x28=784 units
• 10 outputs, one for each digit. 512 units in hidden

layer.
• Parameters

784x512 + 512 (bias) + 512x10 + 10 (Bias) = 407,050
• Hyperparameters

3 Layers
784 Units in input layer
512 units in hidden layer (Sigmoid/Relu)
10 Units in output layer (Softmax)
Loss: Mean Squared Error/Categorical Cross-Entropy
Optimizer: (SGD, RMSProp),
Learning Rate: 𝛽 (decided by the optimizer)
Accuracy Metric: Accuracy (% Correct)
epochs (? Start with a max of 10)

47

0

1

2

3

4

5

6

7

8

9

Input Layer
28x28=784 units

Hidden Layer
512 Units

Output layer units

Commonsense Baseline Accuracy

• Before we begin, we should always estimate a baseline accuracy.

That is, given any data set, if we were to randomly assign an
output, what would be the accuracy?

For binary classification, the baseline is 50% accuracy.

For MNIST Digits classification, the baseline is 10% accuracy.

• Any neural network model we train should be able to perform far
better!

48

47

48

11/5/2025

25

Commonsense Baseline Accuracy

• Before we begin, we should always estimate a baseline accuracy.

That is, given any data set, if we were to randomly assign an
output, what would be the accuracy?

For binary classification, the baseline is 50% accuracy.

For MNIST Digits classification, the baseline is 10% accuracy.

• Any neural network model we train should be able to perform far
better!

49

Training & Validation Loss and Accuracy

50

• Notice that the validation loss and validation accuracy both diverge after ~ 4th epoch.

• The model performs better on training data doesn’t necessarily do well on the testing data.

• This is called overfitting.

49

50

11/5/2025

26

Underfitting and Overfitting

51

• Initially, as the training proceeds, the lower
the loss on training data, the lower the loss
on test data. This is underfitting. The
network hasn’t yet modeled the all the
patterns in the training data.

• As training proceeds further, the testing
stops improving and starts degrading: This is
overfitting. The network is starting to learn
patterns specific to the training data.

• Overfitting can occur when the training data
is noisy, ambiguous, or involves uncertainty.

From a Random Model to Overfitting or
Robust Fit

52
From: Chollet, 2021, and
https://medium.com/@datascienceeurope/do-you-know-overfitting-and-underfitting-f27f87ac2f37

51

52

11/5/2025

27

Training Data, Validation Data, Testing Data

53

Entire Dataset

Training Dataset (70%) Validation
Dataset (15%)

Testing
Dataset (15%)

• Training dataset is for use during training
• Validation dataset is to estimate loss/accuracy of the model to

tune the hyperparameters
• Testing dataset is for evaluating the model after training. (how

well does it generalize?)

Backpropagation: Review

54

Optimizer
Overfitting

Parameters
Relu

RMSProp
Scikit-Learn

SGD
Sigmoid
Softmax

Tanh
Testing Data

Training Accuracy
Training Data
Training Loss

True SGD
Underfitting

Validation Accuracy
Validation Data
Validation Loss

Adam
Backpropagation

Bias
Binary Cross Entropy

Categorical Cross Entropy
Commonsense Baseline Accuracy

Epochs
Exponential

Forward Pass
Full Batch SGD

Gradient Descent
Hyperparameters

Keras
Labelled Dataset

Learning Rule
Loss Function

Mean Absolute Error
Mean Squared Error

Mini Batch SGD
Model

53

54

	Slide 1: Review for Exam 2
	Slide 2: Symbolic AI Techniques
	Slide 3: Forward Chaining Inference
	Slide 4: Backward Chaining Inference
	Slide 5: PROLOG Knowledgebase
	Slide 6: Vocabulary
	Slide 7: Meaning Representation Systems
	Slide 8: Frames – Organized in a Hierarchy/Network
	Slide 9: CD – Representations & Inferences
	Slide 10: Semantic Networks
	Slide 11: Large-Scale AI/KR&R Efforts
	Slide 12: CYC – The Ultimate Expert System
	Slide 13: The Seasons of AI
	Slide 14: Towards Usable Representations (1985-now)
	Slide 15: An Example KG
	Slide 16: Commonsense Knowledge
	Slide 17: Review: Meaning Representation Languages
	Slide 18: Behavioral AI
	Slide 19: Agent Types
	Slide 20: Other Successful Approaches
	Slide 21: Robot Architectures: Vocabulary
	Slide 22: Subsymbolic AI
	Slide 23: Symbolic versus Subsymbolic AI
	Slide 24: McCulloch-Pitts Neuron, 1943
	Slide 25: The Perceptron – A Gross Approximation (Rosenblatt, 1958)
	Slide 26: Perceptron Learning Rule
	Slide 27: Perceptron: Vocabulary
	Slide 28: Perceptron Training Algorithm
	Slide 29: Example – The Iris Dataset
	Slide 30: Perceptron Learning
	Slide 31: Another Example – MNIST Dataset
	Slide 32: Limitations of Perceptrons
	Slide 33: Introducing Bias
	Slide 34: Multi-Layer Perceptron Network
	Slide 35: Backpropagation Network (Classic Version)
	Slide 36: Backpropagation (Classic) Training Algorithm
	Slide 37: Backpropagation: Gradient Descent
	Slide 38: Backpropagation: Gradient Descent
	Slide 39: Backpropagation: Learning rate
	Slide 40: Popular Activation Functions
	Slide 41: Softmax Activation Function
	Slide 42: Backpropagation: Vocabulary
	Slide 43: The Learning Paradigm
	Slide 44: How NN Learning Works
	Slide 45: Introducing Keras
	Slide 46: Example: Recognizing Handwritten Digits
	Slide 47: MNIST Digit Recognition: The Design
	Slide 48: Commonsense Baseline Accuracy
	Slide 49: Commonsense Baseline Accuracy
	Slide 50: Training & Validation Loss and Accuracy
	Slide 51: Underfitting and Overfitting
	Slide 52: From a Random Model to Overfitting or Robust Fit
	Slide 53: Training Data, Validation Data, Testing Data
	Slide 54: Backpropagation: Review

