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Forward Chaining Inference

* Tell-Ask Systems

King(John) +~1— Tell Greedy(John)
Vx [King(x) A Greedy(x) = Evil(x)]
+
Inference Engine
(Forward Chaining) —— Evil(John)!

Backward Chaining Inference

* Tell-Ask Systems

King(John)
Greedy(John)
Vx [King(x) A Greedy(x) = Evil(x)]
+
Inference Engine
(Backward Chaining)

+«T— Ask Evil(John)?

—T— Yes!




isa(X, mammal) :-
has(X, hair).

isa(X, bird) :-
has(X, feathers),
flies(X).

isa(X, carnivore) :-
isa(X, mammal),

has(X, pointed_teeth),

has(X, claws),

has(X, forward_pointing_eyes).

isa(X, ungulate) :-
isa(X, mammal),
chews_cud(X);
has(X, hoofs).

isa(X, cheetah) :-
isa(X, carnivore),
color(X, tawny),

has(X, dark_spots).

isa(X, giraffe) :-
isa(X, ungulate),
has?X, long_legs),
has(X, long_neck),
color(X, tawny),

has(X, dark_spots).

PROLOG Knowledgebase

% Facts:

has(stretch, hair).
chews_cud(stretch).
has(stretch, long_legs).
has(stretch, long_neck).
color(stretch, tawny).
has(stretch, dark_spots).

has(swifty, hair).

has(swifty, pointed_teeth).
has(swifty, claws).

has(swifty, forward_pointing_eyes).
color(swifty, tawny).

has(swifty, dark_spots).
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Vocabulary

Knowledge Engineering
FOPC
Knowledge Base
Tell-Ask Systems
Forward Chaining Inference
Backward Chaining Inference
Definite Clauses
Logic Programming
PROLOG
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Meaning Representation Systems

* Logic

* Semantic Networks

* Frames

* Conceptual Dependency

* many many others...

* Japan’s Fifth Generation Project, and several others
* Successes of KR&R

* Limitations of KR&R

Frames - Organized in a Hierarchy/Network

Restaurant
Name: Gulliftys

Address: 1149 Lancaster Ave, Bryn Mawr, PA X Restaurant
19010 IS
Phone: (610) 525-1851

Website: http://gulliftys.com
Cuisine Type: American
Seating Capacity: 120

...etc... -

John went to Gulliftys.
Menu He sat down.

Salads: ...

Main Dishes: He read a menu. .
Entrée: Chicken Cacciatore, $23.00 has The server came to take his
Entrée: Hamburger, $12.00 order.

Entrée: etc. He ordered a hamburger.

Desserts: H he h b
Dessert: Rice Pudding, $8.00 € atej the hamburger.
Dessert: Créme Caramel, $8.00 He paid the check.

Beverages: s He left a tip.

Soda: Coke, $3.00
Hot Beverage: Tea, $3.50 He left the restaurant.
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CD - Representations & Inferences

John went to New York.

ACTOR: John

ACTION: PTRANS
OBJECT: John
DIRECTION TO: New York
FROM: unknown

John bought a book from Mary.

ACTOR: John
ACTION: ATRANS
OBJECT: money
DIRECTION TO: John
FROM: Mary

Johnread a book.

ACTOR: John
ACTION: ATTEND
OBJECT: eyes
DIRECTION TO: book
FROM: unknown

John drank a glass of milk.

ACTOR: John
ACTION: INGEST
OBJECT: milk
DIRECTION TO: mouth of John
FROM: glass
Instrument:
ACTOR: John
ACTION: PTRANS
OBJECT: glass containing milk
DIRECTION TO: mouth of John
FROM: table
Instrument:
ACTOR: John
ACTION: MOVE
OBJECT: hand of John
DIRECTION TO: glass
FROM: unknown
Instrument:
ACTOR: John
ACTION: GRASP
OBIJECT: glass of milk
DIRECTION TO: hand of John
FROM: unknown

9
Semantic Networks
* Represents semantic relations between concepts in a network.
Itis a graph Vertebra ~ Cat — 125 o ¢

vertices represent concepts

edges represent semantic relations h;\ / h%/
* Also represented as a triple: is an is a

Animal <————— Mammal<——— Bear
<entity, relation, entity> is
<mammal, has, vertebra> 'S an Whale
<bear, is a, mammal> /
<fish, lives in, water> Fish —vesin lives in

From: https://en.wikipedia.org/wiki/Semantic_network#/media/File:Semantic_Net.svg
10

10
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Large-Scale Al/KR&R Efforts

* Japanese Fifth Generation Project

10-year project started in 1982.

Creating supercomputers for future Al development using PROLOG.
Develop Knowledge Information Processing Systems.

Sgent ~$300 million over twelve gears,

(IBM’s research expenditure in 1982 was $1.5 billion!)

* Limited Results
Developed foundations for concurrent logic programming.
Developed Kappa (a parallel DBMS)

Developed an automated theorem prover, MGTP
Attempt at applications in bioinformatics.

* Did not meet commercial success

The arrival of SUN Workstations and x86 based machines far surpassed the abilities.
Failed on attempts to develop concurrent KR&R systems.

* Perhapsthe ideas were far ahead of its time.

For example, current multi-core processors being used in current Al work.

11
CYC -The Ultimate Expert System
* Methodology
Developed a representation language, CycL.
Developed a set of representations (ontological engineering)
Developed a massive knowledgebase comprising human
knowledge.
Connected CYC’s knowledge to Wikidata (Wikipedia) and other
large knowledgebases.
An inference engine.
12
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The Seasons of Al

* 1950s- 1966 First Al Summer: Irrational Exuberance

Early successesin game playing, theorem proving, problem solving

* 1967 -1977 First Al Winter

No useful deliverables led to loss of research funding and cancellation of Al programs. In UK The Lighthill Report (toy Al
systems do not scale due to combinatorial explosion).

* 1978-1987 Second Al Summer/Spring

Rise of knowledge-based systems, success of Expert Systems. Boom times.

* 1993-2011Third Al Summer (Mostly academic advances)
Statistical approaches and extensions to logicéBayesian Nets), Non-Monotonic Reasoning (in Logic), Fuzzy Logic, advances
in Machine Learning (Decision Trees, Random Forests, Neural Nets), Cognitive Models, Logic Programming, Case-Based
Reasoning, Genetic Algoritms, Agent-based approaches, etc.

* 2011-Now Third Al Spring
Rise of Deep Learning, Neuro-symbolic Al, ChatGPT and other chatbots, generative Al.

13

Towards Usable Representations (1985-now)

publication

* Wordnet, 1985 (Princeton U.)

playsiot Hoy Wit
scrpt

ot K

A lexical database of semantic .
relations between words. ey e

ssiicn book ek

subdidsion

Over 150,000 organized in 207,000 S\ e T\
word-sense pairs (eat-out, car-
pool). ’

Now available for multiple
languages.

Holy Scriplure

14
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An Example KG

Concepts, relations etc. in a KG

can be obtained from and linked
to several disparate structured
Sources of data:

ConceptNet
ATOMIC
Wikidata
WordNet
Roget

VerbNet
FrameNet
VisualGenome
ImageNet

From: https://atonce.com/blog/knowledge-graph

Jeff Williams

Pro Solo

15

Commonsense Knowledge

On stage, a woman takes a seat at the piano. She
1. sits on a bench as her sister plays with a doll.
2. smiles with someone as the music plays.
3.isin the crowd, watching the dancers.

4. nervously sets her fingers on the keys.

Which one?

Also, remember Winograd schemas?

Answering the question requires knowledge that humans possess and
apply, but machines cannot distill from the communication.

16
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Review: Meaning Representation Languages

Knowledge Engineering
FOPC
Knowledge Base
Tell-Ask Systems
Forward Chaining
Inference
Backward Chaining
Inference
Definite Clauses
Logic Programming
PROLOG

Frames

Conceptual Dependency
Semantic Networks

5t Gen. Project, SGI, Alvey, ESPRIT

CcYC
Wordnet

Knowledge Graphs

Commonsense Knowledge

17

Behavioral Al

* Subsumption Architecture

Situatedness
Embodiment
Intelligence bottom up
Emergence

* Layers of control

All layers may have an action to suggest.

Only one will be carried out at any time.

The action from the “lowest” %hig est) module.
E.g. AVOID subsumes WANDER.

WANDER subsumes EXPLORE.

* Built several robots: Allen, Herbert, Tom & Jerry,
Seymour, Genghis, Squirt.

Genghis Link: https://www.youtube.com/watch?v=1j6CliOwWRng

nwaounwzZzmn

EXPLORE

WANDER L~

AVOID

@

MOTOR

18
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Agent Types consors

percepts

* Table-Driven Agents
Use a percept-action table in to find next action.

* Simple Reflex Agents effectors
Based on condition-action rules

* Agents with Memory

Have internal states that are used to keep track of past states of the world.

* Agents with Goals
Have state and goal information to take future states into consideration.

* Utility-Based Agents

Use utility theory to act rationally.

* LLM-Based Agents

Carry out actions recommended by an LLM.

actions

19
Other Successful Approaches
* Rational Agents (Utility based agents)
* Bayesian Inference
* 1997: IBM’s Deep Blue beat Garry Kasparov
* 2012: IBM’s Watson wins Jeopardy!
20

10
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Robot Architectures: Vocabulary

Intelligence w/o
Representation
Behavioral Al
Subsumption Architectures
Genghis, Co
NASA Pathfinder
NASA Spirit & Opportunity
NASA Curiosity, Ingenuity
Boston Dynamics Big Dog
Boston Dynamics Spot, Atlas
Agent-Based Al
Types of Agents
Agentic Al
IBM Watson

21

21

Subsymbolic Al

22

11
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Symbolic versus Subsymbolic Al

* Symbolic Al
Everything is represented using symbols.
Ais a block Block(A)

1l 23
5

Representation of a state

10 7
EEEE

Expert Systems, Frames, Scripts, Semantic Nets, Knowledge Graphs
etc.

* Subsymbolic Al
There are NO SYMBOLS.

Approaches that employ Neural Networks and other statistical mechanisms

23

23
[ J 'I'l
McCulloch-Pitts Neuron, 1943 S
L2
* Binary Threshold Units - ye{0,1}
Ty~
+ Captures the inhibitory and excitatory connections ///
between biological neurons. - //
/
* Limited in what such a model can actually do. an € {0,1}
* Missing the learning capability: how to model changes in L
inhibitory and excitatory connections. This was later 9(@1, 2, X3, ..y, Tp) = g(x) = Z L
included in Hebb’s model (1949). Repeated firings can i=1
modify the nature of the connections.
y=flgx) =1 if g(x)>¥6
* Frank Rosenblatt, 1958 combined these ideas into the =0 if g(x)<¥6
model of a Perceptron.
From: https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
24
24
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The Perceptron — A Gross Approximation
(Rosenblatt, 1958)

X4

* A single “neuron” (unit) X y
aka Threshold Logic Unit (TLU) inputs « output
Xn/\Nn'

* Transfer Function
Tis the Threshold value (assume T = 0)

1=n
I = ZWixi
i=1

_(+1ifI =T
Y= 1-1ifI <T

25

25

Perceptron Learning Rule

* Changes the weights
W = [wyq, wy] weight vector

X = [xq1,%5] input vector

Woew = Woig — V* X Training Rule

26

26

13
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Perceptron: Vocabulary

* Labelled Training Dataset

N samples/patterns/input vector with desired outputs (targets/labels)

* Output Error (Loss)
Error = Desired Output — Actual Output

* Learning Rule

Specifies change in the weights using the Error

* Prediction/Forward Pass

Application of a pattern to produce output

* Epoch
1 pass through the training dataset

27

27

Perceptron Training Algorithm

Initialize all weights to random values
#In what range? Typically [-1.0..1.0]
Set #Epochsto some N
// How to decide what N should be?
Do N times or until all outputs are correct
Do for each pattern in the training set
apply the pattern to the perceptron
change the weight vector as defined

28

28

14
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Example — The Iris Dataset

* 150 Samples, 50 of each variety

Labelled: 0 (Setosa), 1(Versicolor), 2(Virginica)

Sepal Length & Width
[5.1, 3.5, 1.4, 0.2
[4.9, 3. T 9.2],
[4.7, ®72, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],

Petal Length & Width
Petal Length

w‘
y )

. 0, if Setosa
InpUtS 1, if Versicolor
Petal Width 2

# Parameters = 2

Hyperparameters: # of epochs

From: https://www.fs.usda.gov/wildflowers/beauty/iris/flower.shtml

Iris setosa

https://peaceadegbite1.medium.com/iris-flower-classification-60790e9718a1

standard
(petals) —

yellow patch
(signal)

Iris versicolor Iris virginica

29

29
Perceptron Learning
A hyperplanein R%isaline A hyperplanein R3isa plane
0 e T
X g
oo IN T
TR N
paf
30

15
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Another Example — MNIST Dataset

» 70,000 images of handwritten digits

' ) ) 000000600 p0C0L 0O

* Each image is 28x28 pixels I I S A A 2 B R AR
2222332222223 22

2233333353333 33

* Each pixelis in the range [0..255] j;‘;;? ‘;:‘;2‘;41;‘;;6’
S _ , - -
0 = white, 255 = black. Greys in between. cLbblLcobbcecoce
TI7773770 TN 2R TT

.. . . ¥2I7®E 8P FRPTT YLV

* Training set: 60,000 images $99999%999949479

* Testing set: 10,000 images

* Task: Given an image, classifyitas[0,1,...,9]

31

DmdeEntWl—=0

31

Limitations of Perceptrons

* Limited to binary classification tasks only

* Perceptrons, by Minsky & Papert, 1969

Types of problems Perceptrons could solve were limited to linearly separable problems.
Real world problems are not linearly separable.

Perceptron Learning Algorithm would not scale up to tasks requiring large number of weights
and thresholds.

For networks with three or more layers there is no obvious way of knowing what the desired
output of hidden layers should be.

There is no training procedure possible for networks of three or more layers.

Led to drying up of funding in neural network research in the 1970s.

32

32

16
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Introducing Bias

* Instead of using an arbitrary Threshold value, we can

turnitinto aninput (=1)

* The weight on the bias, w, can then be learned using the

same algorithm.
w = [wy, wy, w,]

X = [1,xl,xZ]

* More often, the netinputis determined using the
following (and no bias is used for output layer):

i=n
I = ZWL'XL' +E
i=1

X
1%
. y
inputs output
X2/\Nz' T=0

inputs  w,

Xy W,

33

33

Multi-Layer Perceptron Network

* Example: This could be a network that

can recognize all three categories of
irises from the Iris dataset.

4 inputs, 3 outputs (Hyperparameters)
4x4 (input to hidden) + 4x3 (hidden to
output?weights + 7 bias inputs

#Parameters = 16+12+7 =35

* Since all units are linear TLUs this

network can only learn linear functions.

* We need to make each unit non-linear.

Bias Inputs

N inputsgs

Input Layer Hidden Layer

34

34

17
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Backpropagation Network (Classic Version)

* Netlnput Bias Inputs

i=n
[= Zwixi + E

1

* Activation Function (Sigmoid)
f() =
M 1+e! :
* Learning Rule N inputs
Aw; = B = E (1))

* Error/Loss

goutput _  desired _ ,actual

j Yj Yj

. df(rhiddeny
Eihldden — ( ldl ) z( wyj Ejoutput)
=t Input Layer Hidden Layer

35

35

Backpropagation (Classic) Training
Algorithm

set minimum acceptable error and #epochs to train, set 8
set #epochs =0

repeat
total error =0

for each pattern in training set do
do a forward pass

for each unitin the hidden layer do
compute netinputl, and activation, f(l)
save f(l) for backpropagation

for each unitin the output layer do
compute netinputl, and activation f(l)
outputy = f(l)

do backward pass
for each unitin the output layer do
compute error = desired — actual output (Eioutpm = yldes‘rEd - y;‘m‘?‘l)
total error = total error + error

for each unitin the middle layer do
compute incoming error = weighted sum of output later errors ( }‘:1( w[,E‘""[p"L))
compute final error = incoming error * f(I) * (1 - 1) [derivative)

for each unit in the outputlayer do
for each weight from a hidden layer to unitdo
compute weight change f * error * f(I) and update weight

for each unit in the middle layer do
for each weight from an input layer unit do
compute weight change f8 * final error * f(I) and update weight

#epochs = #epochs + 1
36

until total error < maximum acceptable error or #epochs reaches limit

36

18



11/5/2025

Backpropagation: Gradient Descent

* Learning in a neural network using
Backpropagation is essentially a Error
Gradient Descent process. A

“error bowl”

* Each change in the weights is an
attempt to reduce error and descend
into the lowest possible positionin
the “error bowl” (as shown in a 2-D
weight vector case)

Weight, y
. . . . Weight, x >
* In higher dimensional weight vectors o
(typical ML situations), the error
surface can be quite complex.
From: https://builtin.com/data-science/gradient-descent
37
37
Backpropagation: Gradient Descent
* In higher dimensional weight vectors
(typical ML situations), the error e
surface can be quite complex. —
error bow!
o \“ Weight, y
\ .‘:;ff\\&?\‘:’:' Weight, x >
\\\\\Q‘,g‘.:t N/ X
From: https://poissonisfish.com/2023/04/11/gradient-descent/ From: https://builtin.com/data-science/gradient-descent
38
38

19



11/5/2025

Learning Rate,  (0< 1)

The value of f determines how
fast or slow the gradient descent
takes place.

Typically, one starts with a higher
value (say 0.5 or 0.6) and then
decrease it as the learning/epochs
progresses. Thisis called a
Learning Rate Schedule.

N

A\

Backpropagation: Learning rate

Small learning rate

\

=

From: https://www.ibm.com/topics/gradient-descent

39

39

Popular Activation Functions

15 1.00 —

1.04 0.75}

0.5 0.50

0.0 0.25

%0 S5 0 =05 0.0 05 10 15 0'00_;/_3 > =1 0 1

Relu - Rectified Linear Unit: f(I) = max(0,1) Sigmoid: f(I) = ﬁ
40

40
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Softmax Activation Function

* Transforms a vector of arbitrary
numbers into a probability

distribution.

Each value isin[0.0..1.0]
Summ of all valuesis 1.0

Output
layer

1.3
5.1
2.2
0.7
1.1

Useful for multi-class
classification problems. E.g.,
Recognizing handwritten digits
(ten possible outcomes [0, ..9])

Softmax

—

activation function Probabilities
0.02
e 0.90
Z K 0% $|0.05
=1 0.01
0.02

a1

41
o Adam
Backpropagation: Vocabulary
Binary Cross Entropy
Categorical Cross Entropy
. . Epochs
* Inwhat order do we present the patterns? As they are in the training Exponential
set? Or, randomly? ) ) | e
If patterns are chosen at random (without replacement), we call it Full Batch SGD
Stochastic Gradient Descent (SGD) by ——
Choices: Hyperparameters
Labelled Dataset
Do a backpropagation pass after every input. True SGD Learning Rule
Do the backward fter all the inputs have b d poss Plnovon
o the backward pass after all the inputs have been seen, an Mean Absolute E
errors recorded. Full batch SGD oo G eree B
Do a small batch of data and then do a backward pass. Mini Batch Mini Batch SGD
SGD (each batch is a power of 2) g"del
) ptimizer
Is there a better way to assess error/loss? Loss Functions Parameters
Are there any other weight update mechanisms? Optimizers (also IRl
manage Learning rate schedules) Fs‘g'gpmp
Most of the period from 1986 until now has been spent on studying Sigmoid
these questions. Softmax
Tanh
\_ True SGD /
42
42

21
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The Learning Paradigm

Learning/Training
Algorithm

]

Model Design Labelled
Training Dataset

Test Dataset

Trained
Model

Outputs
Accuracy

Actual Data

Finished
Model

Outputs

43

43
How NN Learning Works
Input X
” Layer
(data transformation)
1
= Layer
(data transformation)
1
Weight Predictions True targets
update Y Y
From: Chollet, 2021.
44
44
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Introducing Keras

* Deep Learning APl for Python (2016-17)
* Built on top of TensorFlow (2015)

CPU GPU TPU

From: Chollet, 2021.

* Canrunon atypical CPU, or can be accelerated with specialized
hardware, if available. GPUs (Graphics Processing Units), TPUs

(Tensor Processing Units)

* Makes Neural Network design, implementation, and exploration

akin to building with LEGOs!

45

45
Example: Recognizing Handwritten Digits
* MNIST Dataset
70,000 images (28x28 pixels),grayscale j,p000060e0p0000 000
values (inrange 0 (white) to 255 (black). 'Yy i /72020 v 1A /70
Ad 2222222122222
232333333323 333333
.. ) H#rd 44949 gvdq 4 \yH
* Training set: 60,000 images 5558555555585 ¢55
bbb LELbLblbaee é66c6l
* Testing set: 10,000 images 777717 TANT 277 7
¥ 2 B8 FPFRERRPTYTTYTEC S
99999%994994944999
* Task: Given an image, classify it as
[0,1,...,9]
46

23
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MNIST Digit Recognition: The Design

O
+ A3-layer network: input, hidden, and output layers | O Outputiayer units
« Input will be 28x28=784 units ! O o
* 10 outputs, one for each digit. 512 units in hidden O O !
layer. ‘ : O i
* Parameters O !
784x512 + 512 (bias) + 512x10 + 10 (Bias) = 407,050 ; ; O—-
. ngeerpsarameters 28'”2’;;*7“”? O O 4
784 Units in input layer s ta i AV O s
512 units in hidden layer (Sigmoid/Relu) ; Rioan Laygt
10 Units in output layer (Softmax) : O ¢
Loss: Mean Squared Error/Categorical Cross-Entropy O
Optimizer: (SGD RMSPro 1 O O 7
Learning Rate: S ( de0|de the optimizer) i 1 O
Accuracy Metric: Accuracy?l % Correct) 1 8
# epochs (? Start with a max of 10) ! O O 0
‘ O
O 47
47
Commonsense Baseline Accuracy
* Before we begin, we should always estimate a baseline accuracy.
That is, given any data set, if we were to randomly assign an
output, what would be the accuracy?
For binary classification, the baseline is 50% accuracy.
For MNIST Digits classification, the baseline is 10% accuracy.
* Any neural network model we train should be able to perform far
better!
48
48
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Commonsense Baseline Accuracy

* Before we begin, we should always estimate a baseline accuracy.

That s, given any data set, if we were to randomly assign an
output, what would be the accuracy?

For binary classification, the baseline is 50% accuracy.

For MNIST Digits classification, the baseline is 10% accuracy.

* Any neural network model we train should be able to perform far

better!

49

49
Training & Validation Loss and Accuracy
<7 1.001 e Training acc PO I
0.6 —— Validation acc‘ o ® ;e
L]
05 .35 o
L]
0.4
2 4 0.90 L
J03 = M\/_
0.2 0.85
01
Ny 0-..........‘ 0801 o
75 100 125 150 175 20.0 25 50 75 100 125 150 175 200
Epochs Epochs
* Notice that the validation loss and validation accuracy both diverge after ~ 4" epoch.
* The model performs better on training data doesn’t necessarily do well on the testing data.
* Thisis called overfitting.
50
50
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Underfitting and Overfitting

* Initially, as the training proceeds, the lower
the loss on training data, the lower the loss
on test data. This is underfitting. The - e e cune

network hasn’t yet modeled the all the valve | % U1 derfiting
patterns in the training data. Y

* As training proceeds further, the testin% o \ e
stops improving and starts degrading: This is KN s
overfitting. The network is starting to learn P, Robustit ==

patterns specific to the training data.

Training time

¢ Overfitting can occur when the training data
is noisy, ambiguous, or involves uncertainty.

51

51
From a Random Model to Overfitting or
Robust Fit
i \ Error l\ E l\\ e
N oiion S
From: Chollet, 2021, and
https://medium.com/@datascienceeurope/do-you-know-overfitting-and-underfitting-f27f87ac2f37 52
52
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Entire Dataset

Training Data, Validation Data, Testing Data

Training Dataset (70%)

Validation
Dataset (15%)

Testing
Dataset (15%)

* Training dataset is for use during training

* Validation dataset is to estimate loss/accuracy of the model to
tune the hyperparameters

* Testing dataset is for evaluating the model after training. (how
well does it generalize?)

53
Back ion: Revi
[ ]
ackpropagation: Review
/ Adam N\ / o N\
Backpropagation g\?(etlr?:tltzlsrg
Bias
Binary Cross Entropy Par??mle[ers
Categorical Cross Entropy M ePU
ICommonsense Baseline Accurac! . 'k's LVOP
Epochs Ci é;l)eam
Exponential ) :
Forward Pass Slgf;nmd
Full Batch SGD S(:_ mhax
Gradient Descent Testire:g Data
Hyperparameters
v Eeras Training Accuracy
Labelled Dataset '_Ilzl’a!n!ng [L)ata
Learning Rule raining Loss
Loss Function ULI';I::ﬁ_I?]g
Mean Absolute Error _Jnderfitti
Mean Squared Error Va\l;:ﬁélaopo’:clg::cy
Mini Batch SGD laati
w Validation Loss
54
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